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ABSTRACT

We study the structure of the minimum set of the normal curvature for

a symmetric bilinear map on Euclidean or Hilbert space, the conditions

when this set contains strongly umbilical, conformal nullity, etc. linear

subspaces. The main goals are estimates from above of the codimension

of these subspaces for a symmetric bilinear map with positive normal

curvature and the inequality type restriction on the extrinsic qth scalar

curvature. We estimate from above the codimension of asymptotic and

relative nullity subspaces for a symmetric bilinear map with nonpositive

extrinsic qth scalar curvature.

Applying the algebraic results to the second fundamental form of a sub-

manifold with low codimension, we characterize the totally umbilical and

totally geodesic submanifolds, prove local nonembedding theorems for the

products of Riemannian manifolds and global extremal theorem for the

space of positive curvature. On the way we generalize results by Florit

(1994), Borisenko (1977, 1987) and Okrut (1991) about Riemannian and

Hilbert submanifolds.

Introduction

We first introduce some definitions and notations. Let M be a Riemannian

space with the scalar product 〈·, ·〉 on TM . The sectional curvature of M

at a point m ∈ M for a plane σ ⊂ TmM is denoted by KM (σ). Set
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KM (m) = sup{KM (σ) : σ ⊂ TmM} and KM = sup{KM(m) : m ∈ M}.
In this paper all manifolds, maps, vector bundles, etc. are assumed to be of the

class C∞, unless otherwise stated.

Let N ⊂ M be a submanifold with the second fundamental form

h: TN × TN → TN⊥.

We call |h(x, x)| the normal curvature of N in the direction x ∈ TN, |x|=1.

The mean curvature vector of h is determined by the equality H = 1
n traceh.

A submanifold N is said to be totally geodesic in M if h = 0, and totally um-

bilical if h(x, y) = 〈x, y〉H , where x, y ∈ TN and H 6= 0. Define a continuous

function λh: N → R by

λh(m) = min{|h(x, x)|: x ∈ TmN, |x| = 1}.

We call λh(N) = infm∈N λh(m) the minimum of the normal curvature of

N . The minimum set of the normal curvature at m is defined by

Ch(m) = {x ∈ TmN : |h(x, x)| = λhx2}.

Recall that a submanifold Nn ⊂ Mn+p is isotropic at m ∈ N if the normal

curvature |h(x, x)| is positive and does not depend on the choice of a unit vector

x ∈ TmN . In this case we have the equality Ch(m) = TmN . Every totally

umbilical submanifold is isotropic, but not vice versa.

In case of λh(m) = 0 the set Ch(m) coincides with the set of all asymptotic

vectors at m. In case of λh(m) > 0 there are no nonzero asymptotic vectors

at m; moreover, if the inequality holds for all m ∈ N then the function λh is

C∞-differentiable.

We say that Ta ⊂ TmN is an asymptotic subspace of N at m if h(x, x) = 0

for all x ∈ Ta. The dimension νa(m) of a maximal asymptotic subspace at m

is called the asymptotic index of N at m. The relative nullity subspace

Tν(m) ⊆ TmN at m ∈ N is defined by the equality

Tν(m) = {x ∈ TmN : h(x, y) = 0, ∀y ∈ TmN}.

The dimension ν(m) = dimTν(m) is called the relative nullity index of N

at m. The asymptotic index at m satisfies the inequality νa(m) ≥ ν(m). Set

νa(N) = minm∈N νa(m), ν(N) = minm∈N ν(m).

The structure of the set Ch(m) in case of λh(m) = 0 (i.e., the cone of asymp-

totic vectors) was studied by several authors. The definition of the asymptotic
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index is due to A. Borisenko, the relative nullity index ν(N) was introduced by

S. Chern and N. Kuiper. It is a well-known fact that the positiveness of ν(N)

imposes strong conditions on the metric and on the structure of the subman-

ifold. Borisenko studied the class of strongly k-parabolic submanifolds, i.e.

with ν(N) ≥ k. He showed that the strongly k-parabolic submanifold N can be

reconstructed in case when the base submanifold B ⊂ N (i.e. transversal to the

distribution Tν) or the Grassmanian image of N have no asymptotic vectors.

S. Chern and N. Kuiper have shown that ν(m) ≥ n − p at the points m ∈ N

where the extrinsic sectional curvature Kh(σ) = KN (σ) − KM (σ) (the differ-

ence between the sectional curvatures of the submanifold and of the ambient

space with respect to two-dimensional planes tangent to the submanifold) van-

ishes. For Riemannian submanifold N ⊂ M , the Gauss equation says that the

extrinsic sectional curvature of N for a plane σ ⊂ TmN is given by

(1) Kh(σ) = 〈h(x, x), h(y, y)〉 − h2(x, y),

where x, y is any orthonormal basis of σ (i.e., σ = x ∧ y). Set Kh(m) =

sup{Kh(σ) : σ ⊂ TmN}. Otsuki [17] has proved that at each point m of a

submanifold Nn ⊂ Mn+p of codimension p ≤ n with Kh(m) ≤ 0 there is at

least 1-dimensional asymptotic subspace. Florit [9] generalized Otsuki’s result

by proving the inequalities

(2) a) νa(m) ≥ n − p, b) ν(m) ≥ n − 2p.

These estimates are sharp. Let U2 ⊂ R
3 be a surface in Euclidean space

with negative Gaussian curvature at m0 ∈ U2. Then the product immersion

of p factors Nn = U2
1 × · · · × U2

p → R
3p satisfies ν(m) = n − 2p = 0 at

m = (m0, . . . , m0). Obviously, there is a p-dimensional asymptotic subspace

Ta(m) ⊂ TmN , i.e. the asymptotic index νa(m) = n − p.

Definition 1: Let V = span{x1, . . . , xq} ⊆ TmN be a subspace spanned by

q (2 ≤ q ≤ n) orthonormal vectors at m. The extrinsic qth scalar curvature

of V is defined by the formula

(3) τq
h(V ) =

2

q(q − 1)

∑

1≤i<j≤q

Kh(xi ∧ xj).

Set τq
h(N) = sup

m∈N
τq
h(m), where τq

h(m) = sup{τq
h(V ): V ⊆ TmN, dimV = q}.

The q-dimensional extrinsic curvature (q even) for V is defined by the

formula, see [2],
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γq
h(V ) =

1

2q/2q!

×
∑

i,j∈Sq

ε(i)ε(j)[〈h(xi1 , xj1), h(xi2 , xj2)〉−〈h(xi1 , xj2), h(xi2 , xj1)〉]

×· · ·×[〈h(xiq−1
, xjq−1

), h(xiq
, xjq

)〉 − 〈h(xiq−1
, xjq

), h(xiq
, xjq−1

)〉].(4)

Here Sq stands for the set of all permutations of degree q and ε(i) is the sign

of a permutation i = (i1, . . . , iq). Set γq
h(N) = supm∈N γq

h(m), where γq
h(m) =

sup{γq
h(V ): V ⊆ TmN, dimV = q}.

These γq
h(V ) and τq

h(V ) coincide with Kh(V ) for q = 2. The (intrinsic)

qth scalar curvature τq
N (V ) and the q-dimensional curvature γq

N (V ) are defined

similarly to (3) and (4), using the sectional curvature K and the curvature

tensor R of a manifold.

Recall that the second fundamental tensor of a normal ξ ∈ TN⊥ is a

linear self-adjoint operator Aξ: TN → TN defined by the equality 〈Aξx, y〉 =

〈h(x, y), ξ〉 (x, y ∈ TN).

Borisenko [3] studied submanifolds Nn⊂Mn+p with degenerate second fun-

damental tensor. He estimated the rank at m ∈ N (i.e. the maximal rank of Aξ

for ξ ∈ TmN⊥) of a submanifold with γq
h ≤ 0 as

(5) r(m) ≤ 2p(q − 1).

For the relative nullity index Borisenko deduced a much stronger quadratic

relation

(6) ν(m) ≥ n − p(p + q − 1).

However, his estimate (6) for q = 2 is weaker than (2b). Because of r(m) ≤
n − ν(m) the inequality (5) for q = 2 follows from (2b).

The paper deals with Riemannian submanifolds N ⊂ M satisfying the in-

equality

(7) τq
h(m) ≤ λ2

h(m)

for some q and m ∈ N . This condition generalizes the inequality τq
h(m) ≤ 0.

Definition 2: Let λh(m) > 0. We say that Tu(ξ) ⊆ Ch(m) is a strongly

umbilical subspace relative to ξ, |ξ| = λh(m) if

h(x, y) = 〈x, y〉ξ, ∀x, y ∈ Tu(ξ).
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The dimension νu(m) of a maximal strongly umbilical subspace at m is called the

strongly umbilical index of N at m. We say that ξ ∈ TmN⊥, |ξ| = λh(m),

is the strongly principal curvature normal if the strongly conformal

nullity subspace Tc(ξ) ⊆ Ch(m) given by

Tc(ξ) = {x ∈ TmN : h(x, y) = 〈x, y〉ξ, ∀y ∈ TmN}

is at least one-dimensional. An integer

νc(m) = min{dimTc(ξ) : ξ ∈ TmN⊥, |ξ| = λh(m)}

is called the strongly conformal nullity index of N at m. Set

νu(N) = min{νu(m) : m ∈ N, λh(m) > 0},
νc(N) = min{νc(m) : m ∈ N, λh(m) > 0}.

Remark 1: The following condition is sufficient for the inequality λh(m) > 0:

(8) ∀x ∈ TmN \ {0}∃σ ∋ x : KN(σ) > KM (σ).

In fact, if ∃x ∈ TmN \{0} : h(x, x) = 0 (i.e. λh(m) = 0) then KN (σ)−KM (σ) =

Kh(σ) = −h2(x ∧ y) ≤ 0 for all σ ∋ x. For example, a submanifold N ⊂ R
N of

positive sectional curvature at m ∈ N obeys the condition λh(m) > 0.

We study the structure of the minimum set Ch(m) in case of λh(m) > 0

and (7), the conditions when this set contains strongly umbilical and strongly

conformal nullity (linear) subspaces. Our aim is to estimate from below the

strongly umbilical and the strongly conformal nullity indices. The last index

is a particular case of the conformal nullity index (and λh is a principal curva-

ture function), see [18], that arises in several different geometric situations, see

discussion in [7]. The strongly umbilical index νu(m) was defined for isometric

immersions N ⊂ M between space forms (in this case strongly umbilical sub-

spaces were named isotropic subspaces), see [4]. Such immersions with strong

umbilical points, i.e. νu(m) = dimN , are studied in [13], see also [16]. The

equality νu(N) = dim N characterizes totally umbilical submanifolds.

Our main goal is Theorem 1, which is based on a series of algebraic lemmas

given in Section 1. Theorem 1 in case of λh(m) > 0 first estimates the indices

νu(m) and νc(m), and in case of λh(m) = 0 improves (6) and generalizes the

estimates (2). (For case of nonpositive extrinsic qth Ricci curvature see [19],

[20]).
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Theorem 1: Let Nn ⊂ Mn+p be a Riemannian submanifold. Suppose that at

m ∈ N we have τq
h(m) ≤ λ2

h(m) or γq
h(m) ≤ λq

h(m) for some q ≤ n/2. Then:

1. If λh(m) > 0 and p < n
q−1 , then

(9) a) νu(m) ≥ n − (p − 1)(q − 1), b) νc(m) ≥ n − 2(p − 1)(q − 1).

2. If λh(m) = 0 and p < n
q−1 − 1, then

(10) a) νa(m) ≥ n − p(q − 1), b) ν(m) ≥ n − 2p(q − 1).

Because of r(m) ≤ n − ν(m) inequality (5) follows from (10b). The cases

(9b), (10b) of Theorem 1 hold if we omit the assumption for codimension p.

From the cases (9a), (10a) of Theorem 1 we conclude the following statement.

Corollary 1: Let Nn ⊂ Mn+p be a Riemannian submanifold. Suppose that

at m ∈ N we have τq
h(m) < λ2

h(m) or γq
h(m) < λq

h(m) for some q ≤ n/2. Then

1) p ≥ n − q

q − 1
if λh(m) > 0; 2) p ≥ n − 1

q − 1
if λh(m) = 0.

Example 1: Let Nn ⊂ Mn+1 be a hypersurface with the unit normal field ξ

and the second fundamental tensor Aξ. Assume λh(m) > 0 at some m ∈ N .

Then all eigenvalues {λi(m)} of Aξ(m) have the same sign, since otherwise there

is an asymptotic direction at m, a contradiction. Assume the eigenvalues are

positive, λi(m) ≥ λh(m). Hence the matrix Aξ(m) − λh(m)E is nonnegative

definite. From linear algebra follows Kh(m) ≥ λ2
h(m). Hence τq

h(m) ≥ λ2
h(m)

for each q ≥ 2. The equality τq
h(m) = λ2

h(m) means Aξ(m) = λh(m)E, i.e.

νu(m) = νc(m) = n. Hence our estimates (9) are sharp for p = 1.

A totally umbilical submanifold N ⊂ M obeys the equality Kh(m) =

λ2
h(m) > 0 at each m ∈ N . An isotropic submanifold N ⊂ M obeys the

inequality Kh(m) ≤ λ2
h(m), and if equality holds at each point then N is totally

umbilical, [15], [20]. From Theorem 1 (case 1) the corollary follows (see also [20]

and Corollary 3 in Section 1.2).

Corollary 2: Let Nn ⊂ Mn+p be an isotropic submanifold. Then at each

m ∈ N we have

a) nuu(m) ≥ n − (p − 1), b) nuc(m) ≥ n − 2(p − 1).
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An application of Theorem 1 (case 2) is Theorem 2 (local), see [9] for q = 2.

We denote the Heaviside (unit step) function by Heav(x) = {if x < 0 then 0,

else 1}.

Theorem 2: Let Nn = N1 × N2 be a product of Riemannian manifolds. Sup-

pose that there exists m = (m1, m2) ∈ Nn such that KNi
(σ) ≥ 0 (σ ⊂ Tmi

Ni)

and τq
Ni

(mi) ≤ 1 (i = 1, 2) for some q. Then, there is no isometric immersion of

Nn into a sphere Sn+p(C) of constant sectional curvature C = 1 +Heav(q − 4)

for p < n/(2(q − 1)).

This estimate for C is sharp, see Example 3. Basing on Theorem 1 (case 1)

one may extend Theorem 2 to immersions without asymptotic vectors. The

corresponding local Theorem 3 generalizes the result of [9], i.e. λ0 = 0. For

simplicity we assume q = 2 and drop the condition KNi
(σ) ≥ 0 (σ ⊂ Tmi

Ni).

Theorem 3: Let Nn = N1 × N2 be a product of Riemannian manifolds. Sup-

pose that there exists m = (m1, m2) ∈ Nn such that KNi
(mi) ≤ C+λ2

0 (i = 1, 2)

for some λ0 > 0 and C > −λ2
0. Then, there is no isometric immersion of Nn

into a space Mn+p(C) of constant sectional curvature C for λh(m) ≥ λ0 and

p < n/2 + 1.

One may formulate Theorems 2,3 for the product Nn =
∏r

i=1 Ni of r > 2

factors.

Further applications of Theorem 1, global Theorems 4–7, Corollary 4 for iso-

tropic submanifolds and extremal Theorem 8, will be given in Sections 2.1–2.3.

They characterize totally geodesic and totally umbilical submanifolds in Rie-

mannian spaces of positive curvature by the inequality τq
h(N) ≤ λ2

h(N) or

τq
h(N) ≤ 0. Similar applications to Hilbert submanifolds are given in Section 2.4.

1. Algebraic results on symmetric bilinear maps

Let R
N be an N -dimensional Euclidean space with a scalar product 〈·, ·〉.

Throughout Sections 1.1–1.3 we will denote by h: R
n × R

n → R
p, h(x, y) =

h(y, x), a (vector-valued) symmetric bilinear map, where n ≥ 2, p ≥ 1. Sec-

tion 1.4 deals with a continuous symmetric bilinear map h: H × H → R
p on a

Hilbert space H.

We will call λh = inf |x|=1 |h(x, x)| the minimum of the normal curvature

of h, and denote the minimum set of the normal curvature of h by Ch =

{x ∈ R
n: |h(x, x)| = λhx2}. If λh > 0 holds then h has no asymptotic vectors

(i.e., nonzero elements of an asymptotic subspace), and if λh = 0 holds then Ch

coincides with the cone of all asymptotic vectors of h. The isotropic bilinear
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map h is defined by the equality |h(x, x)| = λhx2, λh 6= 0. In this case Ch = R
n

(or Ch = H).

The extrinsic sectional curvature of h (with respect to two-dimensional

plane σ of R
n or H) is defined by the formula (1),

Kh(σ) = 〈h(x, x), h(y, y)〉 − h2(x, y),

where {x, y} is any orthonormal basis of σ. Set Kh = supσ Kh(σ).

Let V = span{x1, . . . , xq} be a subspace spanned by q orthonormal vectors

in R
n (or H). The extrinsic qth scalar curvature τq

h(V ) and the extrinsic

q-dimensional curvature γq
h(V ) are defined by (3) and (4), resp. Set

τq
h = sup{τq

h(V ): dimV = q}; γq
h = sup{γq

h(V ): dimV = q}.

Following the definition in Introduction we call a subspace Ta ⊆ R
n (or Ta ⊆ H)

asymptotic for h if h(x, y)=0 (x, y∈Ta). We call Tν(h) = {x: h(x, y)=0, ∀y}
the relative nullity subspace of h.

Following Definition 2, we call a subspace Tu(ξ) ⊆ Ch strongly umbil-

ical relative to ξ ∈ R
p if |ξ| = λh and h(x, y) = 〈x, y〉ξ (x, y ∈ Tu(ξ)).

We call a vector ξ of the length |ξ| = λh the strongly principal curva-

ture normal of h if the strongly conformal nullity subspace Tc(ξ) =

{x: h(x, y) = ξ〈x, y〉, ∀y} is at least one-dimensional. From Proposition 1,

given in what follows, we obtain that there exists at most one strongly principal

curvature normal ξ of h with dim Tc(ξ) ≥ 2.

We study algebraic properties of a symmetric bilinear map h with the in-

equality τq
h ≤ λ2

h (or γq
h ≤ λq

h). Note that each of these inequalities holds for the

2-nd fundamental form of isotropic submanifolds and becomes an equality for

totally umbilical submanifolds. The results of Section 1 are applied in Section 2

and Introduction for the 2-nd fundamental form at a point of a submanifold. In

Sections 1.1, 1.2 we estimate from below the strongly umbilical and strongly con-

formal nullity indices of h when p is small. Section 1.3 deals with the particular

case of above inequality, nonnegative extrinsic qth scalar curvature (or nonnega-

tive extrinsic q-dimensional curvature), we estimate from below the asymptotic

and relative nullity indices of h when p is small relative to n. One may replace

the extrinsic qth scalar curvature by the extrinsic q-dimensional curvature in all

statements of Sections 1.1–1.4. For convenience, the results of Sections 1.1–1.3

are collected in Table 1.
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τq
h ≤ 0 or γq

h ≤ 0 τq
h ≤ λ2

h or γq
h ≤ λq

h Statement

νa ≥ n − p(q − 1) νu ≥ n − (p − 1)(q − 1) Lemmas 2,5:a

ν ≥ νa − p(q − 1) νc ≥ νu − (p − 1)(q − 1) Propositions 2,3

ν ≥ n − 2p(q − 1) νc ≥ n − 2(p − 1)(q − 1) Lemmas 4,5:b

Table 1. Asymptotic and strongly umbilical indices

1.1 Strongly umbilical index of h. Let h: R
n×R

n → R
p be a symmetric

bilinear map with the property λh > 0. The maximal dimension of strongly um-

bilical subspaces for h is denoted by νu(h) and is called the strongly umbilical

index of h.

Proposition 1 (see [20]): Let h: R
n × R

n → R
p be a symmetric bilinear

map with the property λh > 0. Suppose that for some orthogonal unit vec-

tors x1, x2 from Ch we have h(x1, x2) = 0. Then h(x1, x1) = h(x2, x2) and

Kh(x1 ∧ x2) = λ2
h.

Proof of Proposition 1: . Assume the contrary h(x1, x1) 6= h(x2, x2). The unit

vector x0 = (x1 + x2)/
√

2 is not parallel to x1 or x2. We have h(x0, x0) =

[h(x1, x1) + h(x2, x2)]/2. Hence |h(x0, x0)|<(|h(x1, x1)|+|h(x2, x2)|)/2 = λh, a

contradiction.

Lemma 1: Let h: R
n × R

n → R
p be a symmetric bilinear map with the prop-

erty λh > 0. Suppose that for some q we have the inequality τq
h ≤ λ2

h. If

p(q − 1) < n holds then there is a strongly umbilical (q − 1)-dimensional

subspace X of h for some ξ; moreover, Kh(x ∧ y) = λ2
h for all x ∈ X and

y ∈ kerh(X, ·) = {z ∈ R
n: h(x, z) = 0 ∀x ∈ X}.

Proof of Lemma 1: The proof is based on the method used by Borisenko in

the case γq
h ≤ 0.

The minimum λ2
h of a smooth positive function f(x) = h2(x, x) on the unit

sphere Sn−1 is reached on some unit vector x1 that proves the lemma for q = 2.

Now assume q > 2. Let F (x) = f(x) − µ〈x, x〉. From the necessary condition

of an extremum for the vector x1 we obtain

(11)
1

2
dF (x1)x = 2〈h(x1, x1), h(x1, x)〉 − µ(x1, x) = 0,

(12)
1

2
d2F (x1)(x, x) = 2〈h(x1, x1), h(x, x)〉 + 4h2(x1, x) − µ〈x, x〉 ≥ 0,
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where x ∈ R
n. From (11) we deduce that (1/2)µ = |h(x1, x1)|2 = λ2

h and that

the subspace V1 = kerh(x1, ·) is orthogonal to x1. Note that dimV1 ≥ n − p is

positive. In view of (12), we have 〈h(x1, x1), h(x, x)〉 ≥ (1/2)µ for unit vectors

x ∈ V1.

The minimal value of f(x) restricted on the unit sphere in V1 is reached on

some unit vector x2 ∈ V1. Let V2 = kerh(x2, ·) ⊆ V1 be the subspace of all

vectors x such that h(x2, x) = 0. Then dimV2 ≥ n − 2p is positive. As above,

see (11) and (12), V2 is orthogonal to x2 and for the unit vectors x ∈ V2 we

have 〈h(x2, x2), h(x, x)〉 ≥ |h(x2, x2)|2 ≥ |h(x1, x1)|2. Repeating the process

(q − 2)-times, we obtain a subspace Vq−1 of positive dimension ≥ n − p(q − 1).

Let xq ∈ Vq−1 be any unit vector. By construction, the unit vectors {x1, . . . , xq}
are mutually orthogonal, and we have

(13) h(xi, xj) = 0, 〈h(xi, xi), h(xj , xj)〉 ≥ |h(xi, xi)|2, 1 ≤ i < j ≤ q.

Set V = span{x1, . . . , xq}. Hence

λ2
h ≥ τq

h(V ) =
2

q(q − 1)

∑

1≤i<j≤q

〈h(xi, xi), h(xj , xj)〉 ≥ |h(x1, x1)|2 ≥ λ2
h.

From this it follows that 〈h(xi, xi), h(xj , xj)〉 = |h(xi, xi)|2 = λ2
h (i < j ≤ q).

In view of Proposition 1, there is an ξ ∈ R
p with the property |ξ| = λh such

that h(xi, xi) = ξ for 1 ≤ i < q. One can see that X = span{x1, . . . , xq−1} is a

strongly umbilical (q−1)-dimensional subspace relative to ξ, and h(X, Vq−1) = 0.

In fact, any unit vector x ∈ X is presented in the form x =
∑q−1

i=1 cixi, where
∑q−1

i=1 c2
i = 1. Hence h(x, x) =

∑q−1
i=1 c2

i h(xi, xi) = ξ
∑q−1

i=1 c2
i = ξ.

Lemma 2: Let h: R
n×R

n → R
p be a symmetric bilinear map with the property

λh > 0. Suppose that for some q we have τq
h ≤ λ2

h. If p(q − 1) < n then

(14) νu(h) ≥ n − (p − 1)(q − 1).

Lemma 2 completes Lemma 1 (see [9] for Kh ≤ 0) and proves case 1(a) of

Theorem 1.

Proof of Lemma 2: Define a linear transformation h(x): R
n → R

p by h(x)y =

h(x, y) for x ∈ Ch. By Lemma 1 there is a strongly umbilical (q−1)-dimensional

subspace X0 = span{x1, . . . , xq−1} relative to some vector ξ1 with the property

|ξ1| = λh. Also Kh(σ) = λ2
h for all planes σ ⊂ X0. We set V1 = X0 ⊕ Ṽ0,

W1 = ξ1 ⊕ W̃0 where

Ṽ0 = kerh(X0, ·) =
⋂

1≤i<q

kerh(xi), W̃0 =

{
⋃

1≤i<q

Imh(xi)

}⊥
.
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Define h1 = h|V1×V1
. With the above notations we claim that Imh1 ⊆ W1.

To prove the claim, take unit vector z ∈ Ṽ0 (i.e., h(xi, z) = 0 for all i) and

orthonormal vectors yi ∈ R
n, yi⊥X0, where 1 ≤ i < q. From Lemma 1 follows

that 〈ξ1, h(z, z)〉 = Kh(xi ∧ z) = λ2
h. Since xi ∈ Ch holds, we have for all t

〈h(xi + tyi, xi + tyi), h(z, z)〉 − h2(xi + tyi, z) =

(15) λ2
h + 2t〈h(xi, yi), h(z, z)〉 + Ait

2,

〈h(xi + tyi, xi + tyi), h(xj + tyj , xj + tyj)〉 − h2(xi + tyi, xj + tyj) =

(16) λ2
h + 2t[〈ξ1, h(xj , xj)〉 + 〈ξ1, h(xj , yj)〉] + t2Kh(yi ∧ yj),

where Ai does not depend on t. We can assume yi⊥ kerh(xi) (see the coefficient

for t in (15), (16)). Thus the unit vectors x̃i = 1√
1+t2

(xi + tyi) are orthogonal

to z. Hence for Ṽ = {x̃1, . . . , x̃q−1, z}

(17) τq
h(Ṽ ) = λ2

h +
4t

q(q − 1)

〈 q−1
∑

i=1

h(xi, yi), h(z, z)− (q − 2)ξ1

〉

+ At2,

where A does not depend on t. Note that the linear term in t in (17) changes sign

under the transformation xi → −xi or yi → −yi for each i, but the equation

still holds. In view of τq
h(Ṽ ) ≤ λ2

h this linear term vanishes, and we have

for all i

〈h(xi, y), h(z, z)− (q − 2)ξ1〉 = 0 (y ∈ R
n, y⊥X0),

i.e., h(z, z) ∈ W1 for all z ∈ V1. In view of the symmetry of h, the claim is

proved.

The above claim allows us to proceed inductively as follows. Set V0 = R
n,

W0 = R
p and h0 = h. Given k ≥ 0, for a symmetric bilinear map hk =

h|Vk×Vk
: Vk ×Vk → Wk with the property τq

hk
≤ λ2

h ≤ λ2
hk

, define a nonnegative

integer (note that Imhk(z) contains ξ1)

rk = max{dim Imhk(z): z ∈ Ahk
} − 1,

and suppose that for k ≥ 1

nk = dimVk ≥ n − (q − 1)

k−1∑

i=0

ri, pk = dimWk ≤ p −
k−1∑

i=0

ri.

Note that nk − pk(q − 1) ≥ n− p(q − 1). Picking strongly umbilical (relative to

ξk, |ξk| = λhk
) subspace Xk = span{x̂1, . . . , x̂q−1} ⊂ Vk such that

max
i<q

dim Imhk(x̂i) = rk + 1, |hk(x̂i, x̂i)| = λhk
, hk(x̂i, x̂j) = 0 (i 6= j),
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set Vk+1 =
⋂

1≤i<q kerhk(x̂i), Wk+1 = {⋃1≤i<q Imhk(x̂i)}⊥. Then

Vk+1 ⊂ Vk ⊕ Xk, dimVk+1 ≥ nk − (q − 1)(rk + 1),

Wk+1 ⊂ Wk ⊕ ξk, dim Wk+1 ≤ pk − (rk + 1).

By Proposition 1, ξk = h(x̂i, x̂i) = h(x1, x1) = ξ1. The above claim implies that

Imhk+1 ⊂ Wk+1, where hk+1 = h|Vk+1×Vk+1
. Then

nk+1 = dimVk+1 ≥ (nk + q − 1) − (q − 1)(rk + 1) ≥ n − (q − 1)
k∑

i=0

ri.

Because of

1 ≤ pk+1 = dim Wk+1 ≤ pk + 1 − (rk + 1) ≤ p −
k∑

i=0

ri,

there is an integer m > 0 such that rm = 0. Thus the subspace Vm+1 =
⋂

1≤i<q kerhm(x̂i) is strongly umbilical relative to ξm, i.e., the set Ahm
=

Vm+1 ⊕Xm is a vector subspace. Note that nm − pm(q − 1) > 0. By Lemma 1,

each subspace S ⊆ Vm with the dimension dimS > pm(q−1) intersects Ahm
by

a subspace of the dimension at least q − 1. Hence, dimAhm
≥ (nm + q − 1) −

pm(q − 1) ≥ n − (p − 1)(q − 1). Founding on hm = h|Vm×Vm
, we conclude that

Ahm
is a strongly umbilical subspace as required.

Remark 2: In case of γq
h ≤ λq

h we modify (15)–(17) as

〈h(xi1 + tyi1 , xi2 + tyi2), h(z, z)〉 − 〈h(xi1 + tyi1 , z), h(xi2 + tyi2 , z)〉 =

(18) λ2
hδi2

i1
+ t[〈h(xi1 , yi2), h(z, z)〉+ 〈h(xi2 , yi1), h(z, z)〉] + Ai1i2t

2,

〈h(xi1 + tyi1 , xj1 + tyj1), h(xi2 + tyi2 , xj2 + tyj2)〉
−〈h(xi1 + tyi1 , xj2 + tyj2), h(xi2 + tyi2 , xj1 + tyj1)〉

(19) = λ2
h(δj1

i1
δj2
i2

− δj2
i1

δj1
i2

) + 2tB + At2,

where Ai1i2 , A, B do not depend on t. We may assume yi⊥ kerh(xi) (see the

coefficient for t in (15), (16)). Then unit vectors x̃i = 1√
1+t2

(xi + tyi) are

orthogonal to z. Hence from (18), (19) we obtain

(20) γq
h(Ṽ ) = λq

h +
4tλq−2

h

q(q − 1)

〈 q−1
∑

i=1

h(xi, yi), h(z, z) − (q − 2)ξ1

〉

+ At2,

where Ṽ = {x̃1, . . . , x̃q−1, z}, and A does not depend on t.
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1.2 Strongly conformal nullity index of h. Let h: R
n × R

n → R
p

be a symmetric bilinear map with the property λh > 0. An integer νc(h) =

maxξ dimTc(ξ) is called the strongly conformal nullity index of h. Fol-

lowing [13], we say that y ∈ R
n is a regular element of a bilinear map

β: R
n × R

m → R
p, if dim Imβ(y) = max{dim Imβ(z): z ∈ R

n}. Note that

the set RE(β) of regular elements of β is open and dense in R
n.

Lemma 3 ([13]): Let β: R
n × R

m → R
p be a bilinear map and y0 ∈ RE(β).

Then β(y, ker(β(y0)) ⊆ Imβ(y0) for all y ∈ R
n.

We formulate the central result of the section that proves case 1(b) of Theo-

rem 1.

Lemma 4: Let h: R
n×R

n → R
p be a symmetric bilinear map with the property

λh > 0. Suppose that for some q ≤ n/2 we have τq
h ≤ λ2

h. Then

(21) νc(h) ≥ n − 2(p − 1)(q − 1).

Note that if p > 1, from n−2(p−1)(q−1) > 0 follows p(q−1) < n. Lemma 4

(see [9] for Kh ≤ 0) is a corollary of Lemma 2 and the following proposition:

Proposition 2: Let h: R
n × R

n → R
p be a symmetric bilinear map with the

property λh > 0. Suppose that for some q ≤ n/2 we have τq
h ≤ λ2

h, and for some

ξ there exists a strongly umbilical subspace T ⊂ Tu(ξ), n − q ≥ dimT ≥ q.

Then

νc(h) ≥ dimT − (p − 1)(q − 1).

Proof of Proposition 2: Note that from the conditions it follows that q ≤ n/2.

Let T ′ ⊂ R
n be the orthogonal complement of T . Hence dim T ′ ≥ q. Define

a bilinear map β: T ′ × T → R
p by β = h|T ′×T . Take an orthonormal system

of vectors {yi}1≤i<q ⊂ RE(β) ⊂ T ′ and let x0 ∈ W =
⋂

1≤i<q kerβ(yi). Take

an orthonormal system of vectors {xi}1≤i<q ⊆ T , orthogonal to x0. Let a unit

vector y ∈ T ′ be orthogonal to yi for 1 ≤ i < q. Using only the assumption

that Kh(xi ∧ xj) = 〈h(xj , xj), h(xi, xi)〉 = λ2
h and h(xj , xi) = δijξ on T and

h(x0, yi) = 0 (i > 0), we obtain for small s, t ∈ R that

〈h(x0 + ty, x0 + ty), h(xi + syi, xi + syi)〉 − h2(x0 + ty, xi + syi)

(22) = λ2
h + 2s{2t〈h(x0, y), h(xi, yi)〉 + 〈h(xi, yi), ξ〉} + 2t〈h(x0, y), ξ〉 + Ai,

〈h(xj + syj , syj + xj), h(xi + syi, xi + syi)〉 − h2(xj + syj , xi + syj)

(23) = λ2
h + 2s〈h(xi, yi) + h(xj , yj), ξ〉 + Aij , i 6= j > 0,
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where Ai, Aij contain the terms with s2 or t2. Define an orthonormal system of

vectors ỹ0 = 1√
1+t2

(x0 + ty), ỹi = 1√
1+s2

(xi + syi) and set Ṽt,s = span{ỹi}0≤i<q.

Then:

(24) τq
h(Ṽt,s) = λ2

h + 2s[2t〈h(x0, y), η〉 + 〈ξ, η〉] + 2t〈h(x0, y), (q − 1)ξ〉 + A,

where η =
∑q−1

i=1 h(xi, yi) and A contains the terms with s2 or t2. Because of

τq
h(Ṽt,s) ≤ λ2

h, one must equate to zero linear terms in s and t. This implies

〈h(x0, y), ξ〉 = 0, i.e.,

(25) h(x0, y)⊥ξ ⇒ dim Imβ(y) ≤ p − 1

and

(26) 2t〈h(x0, y), η〉 + 〈ξ, η〉 = 0.

We equate to zero linear and free terms in t of (26) and obtain two equations

(27) 〈h(x0, y), η〉 = 0, 〈ξ, η〉 = 0.

Note that each term h(xi, yi) in η changes its sign under the transformation

xi → −xi or yi → −yi, but the equations (27) still hold. Thus from (27) we

obtain

〈h(x, yi), h(x0, y)〉 = 0 (x⊥x0)

and, in view of h(x0, yi) = 0, one can drop the assumptions x⊥x0 and y⊥{yi}.
In view of (25) the dimension of the subspace W =

⋂

1≤i<q kerβ(yi) obeys the

inequality

dim W ≥ dimT−(p − 1)(q − 1).

From the arbitrariness of x ∈ T and x0 ∈ W follows that

β(y, W )⊥Imβ(yi) (y ∈ T ′).

This, together with Lemma 3, tells us that h(x, y) = 0 (x ∈ W, y ∈ T ′).

But since W ⊆ T holds, we have W ⊆ Tc(ξ) and then νc(ξ) ≥ dimW ≥
dimT − (p − 1)(q − 1).

Remark 3: In case of γq
h ≤ λq

h we modify (22)–(23) for i1, j1, i2, j2 > 0 to obtain

〈h(x0 + ty, x0 + ty), h(xi2 + syi2 , xj2 + syj2)〉
−〈h(x0 + ty, xi2 + syi2), h(x0 + ty, xj2 + syj2)〉

=λ2
hδj2

i2
+ s{2t〈h(x0, y), h(xi2 , yj2) + h(xj2 , yi2)〉

+ 〈h(xi2 , yj2) + h(xj2 , yi2), ξ〉} + 2tδj2
i2
〈h(x0, y), ξ〉 + Ai2 ,(28)
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〈h(xi1 + syi1 , xj1 + syj1), h(xi2 + syi2 , xj2 + syj2)〉
−〈h(xi1 + syi1 , xj2 + syj2), h(xi2 + syi2 , xj1 + syj1)〉

=λ2
h(δj1

i1
δj2
i2

− δj2
i1

δj1
i2

) + 2sB + As2,(29)

where Ai2 contains terms with s2 or t2, and A, B do not depend on s. We use

the terms with st and t, the linear terms with s are not used. Define the vectors

ỹ0 = (x0 + ty)/
√

1 + t2, ỹi = (xi + syi)/
√

1 + t2 and set Ṽ = span{ỹi}0≤i<q.

Then from (28), (29) we obtain

γq
h(Ṽ ) = λq

h + {s[2t〈h(x0, y), η〉 + 〈ξ, η〉] + 2t〈h(x0, y), αξ〉}λq−2
h + A,

where η =
∑

h(xi2 , yj2), α = const ∈ Z, and A contains the terms with s2 or

t2.

Corollary 3: Let h: R
n × R

n → R
p be an isotropic symmetric bilinear map.

Then

νc(h) ≥ n − 2p + 2.

Proof of Corollary 3: In case of an isotropic symmetric bilinear map we have

Kh(x ∧ y) ≤ 〈h(x, x), h(y, y)〉 ≤ |h(x, x)| · |h(y, y)| = λ2
h

for all unit vectors x⊥y. The required inequality follows from Lemma 4 with

q = 2.

1.3 Asymptotic and relative nullity indices of h. Let

h: R
n × R

n → R
p

be a symmetric bilinear map. Recall that if h has a nonzero asymptotic vec-

tor (i.e., element of an asymptotic subspace) then λh = 0. The asymp-

totic index νa(h) is defined as the maximal dimension of asymptotic sub-

spaces. We call ν(h) = dimTν(h) the relative nullity index of h, where

Tν(h) = {x ∈ R
n: h(x, y)=0, ∀y ∈ R

n}.
Basing on Lemmas 2 and 4 of Section 1.1, we estimate the asymptotic and

relative nullity indices of h, and prove case 2 of Theorem 1.

Lemma 5: Let h: R
n × R

n → R
p be a symmetric bilinear map. Suppose that

for some q ≤ n/2 we have τq
h ≤ 0. Then

(30) ν(h) ≥ n − 2p(q − 1).
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If (p + 1)(q − 1) < n then

(31) νa(h) ≥ n − p(q − 1).

Proof of Lemma 5: We first extend the R
p-component of h to a symmetric bilin-

ear map h̃: R
n ×R

n → R
p+1 = R

p ×R by the formula h̃(x, y) = (h(x, y), 〈x, y〉).
Because |h̃(x, x)|2 = |h(x, x)|2 + 1 for |x| = 1, we have λ2

h̃
= λ2

h + 1 ≥ 1. Note

that τq

h̃
= τq

h + 1 ≤ 1 (or γq

h̃
= γq

h + 1 ≤ 1 in case of extrinsic q-dimensional cur-

vature). Hence τq

h̃
≤ λ2

h̃
(or γq

h̃
≤ λq

h̃
). Lemma 2 states that there is a strongly

umbilical subspace T ⊆ R
n (for h̃ relative to some unit vector ξ ∈ R

p+1) with

normal curvature 1 and dimT ≥ n − p(q − 1). This implies that ξ⊥R
p and

h(x, x) = 0 (x ∈ T ). Hence T is an asymptotic subspace of h, and (31) is

proven. The inequality n − 2p(q − 1) > 0 yields (p + 1)(q − 1) < n. According

to Lemma 4 and Proposition 3 we obtain (30).

Proposition 3: Let h: R
n × R

n → R
p be a symmetric bilinear map. Suppose

that for some q ≤ n/2 we have τq
h ≤ 0. Let T ⊆ R

n, n − q ≤ dimT ≤ q be an

asymptotic subspace of h. Then ν(h) ≥ dim T − p(q − 1).

Proposition 3 follows from Proposition 2, see method of proof in proof of

Lemma 5.

1.4 Nullity of a symmetric bilinear map on a Hilbert space. Let

H be a separable Hilbert space. In this section we study algebraic proper-

ties of a continuous vector-valued symmetric bilinear map h: H × H → R
p,

h(x, y) = h(y, x), whose extrinsic qth scalar curvature and the normal curva-

ture are related by the inequality τq
h ≤ λ2

h for some q ≥ 2.

Proposition 4: Let h: H × H → R
p be a continuous symmetric bilinear map

with the property τq
h ≤ λ2

h for some q ≥ 2. Then Ch 6= 0.

Proof of Proposition 4: Assume the contrary; |h(x, x)| > λhx2 for all x 6= 0. Let

V be any (p+2)-dimensional subspace of H. Set h̃ = h|V ×V , then λh̃ > λh ≥ 0.

The minimum, λ2
h̃
, of a smooth positive function f(x) = h̃2(x, x) on the unit

sphere Sn−1 ⊂ V is reached on some unit vector x1. Let F (x) = f(x)−µ〈x, x〉.
From the necessary condition of an extremum for the vector x1 we obtain (11),

(12), where x ∈ V . From (11) we deduce (1/2)µ = |h̃(x1, x1)|2 = λ2
h̃

and that the

subspace V1 = ker h̃(x1, ·) of V is orthogonal to x1. Note that dimV1 ≥ n−p−1

is positive. In view of (12), we have 〈h̃(x1, x1), h̃(x, x)〉 ≥ (1/2)µ for unit vectors

x ∈ V1. Hence λ2
h ≥ Kh(x1, x) = 〈h̃(x1, x1), h̃(x, x)〉 ≥ |h̃(x1, x1)|2 = λ2

h̃
> λ2

h,

a contradiction.
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Example 2: a) In Proposition 4, we cannot replace R
p by a Hilbert space H.

To show this, we construct a continuous symmetric bilinear map h: H×H → H

(the ‘normal space’ is infinite dimensional) with Kh ≤ 0 and without asymptotic

vectors. Let {ei}i∈N an orthonormal basis of H. Starting from this base of the

‘normal space’ H, one can build by induction a base {ξi}i∈N of unit ‘normals’

with the property 〈ξi, ξj〉 < 0 for i 6= j. We may define a Hilbert symmetric

bilinear form h(x, y) =
∑∞

i=1 xiyiξi, where x =
∑∞

i=1 xiei, y =
∑∞

i=1 yiei. Then

h(ei, ej) = δijξi holds. Obviously, h has no nonzero asymptotic vectors. To

prove that Kh is nonpositive, take two orthogonal unit vectors x and y and

obtain

Kh(x∧y) =

〈 ∞∑

i=1

ξix
2
i ,

∞∑

j=1

ξjy
2
j

〉

−
( ∞∑

i=1

ξixiyi

)2

=
∑

i<j

〈ξi, ξj〉(xiyj−xjyi)
2 ≤ 0.

b) In Proposition 4, we cannot replace τq
h ≤ λ2

h by weaker inequality τ∞
h ≤ λ2

h,

where τ∞
h = infq→∞ τq

h . To show this assume that λh = 0 and p = 1. Let

{ei}i∈N be an orthonormal basis of H. One may define a scalar symmetric

bilinear form h(x, y) =
∑∞

i=1
1
2i xiyi, where x =

∑∞
i=1 xiei, y =

∑∞
i=1 yiei.

Then 0 < τq
h(V ) ≤ 2

q(q−1)

∑

1≤i<j≤q
1

2i+j . Obviously that τ∞
h = 0 = λh but

h(x, x) > 0 for x 6= 0. Hence h has no asymptotic vectors.

Basing on Lemma 5, we show that asymptotic and relative nullity subspaces

of h: H × H → R
p satisfying τq

h ≤ 0 have the same codimension as for q = 2.

Lemma 6: Let h: H×H → R
p be a symmetric bilinear map. If τq

h ≤ 0 for some

q ≥ 2, then Kh ≤ 0. Moreover,

(32) a) ∃ asymptotic subspace Ta ⊂ H : codimTa ≤ p, b) codimTν(h) ≤ 2p.

Proof of Lemma 6: Take any two orthogonal unit vectors x1, x2⊥Tν(h). Let

Ṽ be any [2p(q − 1) + q − 2]-dimensional subspace of H containing x1, x2. Set

h̃ = h|Ṽ ×Ṽ . The nullity subspace Tν(h̃) is orthogonal to x1, x2 and by Lemma 5,

dimTν(h̃) ≥ q − 2. Take q − 2 orthonormal vectors {ei} from Tν(h̃). Denote

V = span{e1, . . . eq−2, x1, x2}. Since Kh(ei ∧ ·) = Kh̃(ei ∧ ·) = 0, we obtain

0 ≥ τq
h(V ) = 2

q(q−1)Kh(x1 ∧ x2). Hence Kh(x1 ∧ x2) ≤ 0 as required.

To prove (a) assume the contrary: codimTν(h) > 2p. Set V1 = T⊥
ν (h); let

Ṽ be any 2p(q − 1)-dimensional subspace of H containing V1. Set h̃ = h|Ṽ ×Ṽ ,

then Tν(h̃) = Tν(h) ∩ Ṽ and V1⊥Tν(h̃), dimV1 > 2p. By Lemma 5 for q = 2,

codimTν(h̃) ≤ 2p, a contradiction.

To prove (b) set Ṽ = T⊥
ν (h) and h̃ = h|Ṽ ×Ṽ . Recall that dim Ṽ ≤ 2p. By

Lemma 5 for q = 2, there is an asymptotic subspace T̃a of h̃ with codim T̃a ≤ p.
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Then Ta = T̃a ⊕ Tν(h) is an asymptotic subspace of h with codimTa ≤ p as

required.

2. Applications to submanifolds

In this section we study the submanifolds N ⊂ M satisfying the inequality

τq
h(m) ≤ λ2

h(m) (or γq
h(m) ≤ λq

h(m)), in particular, submanifolds with nonpos-

itive extrinsic qth scalar (or q-dimensional) curvature. We characterize totally

geodesic and totally umbilical submanifolds with small codimension, give corol-

laries for isotropic submanifolds, prove local nonembedding theorems for the

products of manifolds and global extremal theorem about the sphere. One may

replace the extrinsic qth scalar curvature by the extrinsic q-dimensional curva-

ture (for even q) in all statements of Sections 2.1–2.3.

2.1 The qth scalar curvature of the product manifolds. In aim to

prove Theorem 2 we need the following

Lemma 7: Let N1, N2 be Riemannian manifolds. Suppose that there is a point

m = (m1, m2) ∈ N = N1×N2 such that the conditions KNi
(σ) ≥ 0 (σ ⊂ Tmi

Ni)

and τq
Ni

(mi) ≤ 1 (for some q) are satisfied. Then τq
N (m) ≤ 1 + Heav(q − 4).

One may generalize Lemma 7 to a product N =
∏r

i=1 Ni of r > 2 factors.

The estimate of τq
N in Lemma 7 is sharp for q even. This is obvious for q = 2,

and for q ≥ 4 consider the following example:

Example 3: Let Ni be the product S2(6) × R
2 of a sphere and Euclidean

plane. Then τ4
Ni

(mi)<2/(4(4 − 1)) · 6 = 1. Take the planes V1= span{a1, a2}
in Tm1

N1 and V2=span{b1, b2} in Tm2
N2 tangent to S2 factors and consider

the subspace V 4 = span{a1, a2, b1, b2} of TmN . Then the 4th scalar curvature

τ4
N (V ) = 2/(4(4 − 1)) · (6 + 6) = 2. Analogous examples exist for any q > 4.

Proof of Lemma 7: Identify the tangent spaces Tmi
Ni (i = 1, 2) with corre-

sponding subspace of the product TmN = Tm1
N1 × Tm2

N2. Let T q ⊂ TmN

be an arbitrary q-dimensional subspace at m = (m1, m2). There exists an or-

thonormal basis {e1, . . . eq} of T q whose projections on the subspaces Tmi
Ni

are of the form cos θsi~asi (1 ≤ s ≤ q), i.e. es = cos θs1~as1 + cos θs2~as2, where

cos θ2
s1+cos θ2

s2 = 1. Here {~a1i, . . . ,~aqi} are two orthonormal systems of vectors.

Note that the vector ~asi ∈ Tmi
Ni (for some s, i) is not uniquely determined if

cos θsi = 0. By curvature properties of the product manifolds, the sectional

curvature KN(ei ∧ ej) of N is expressed in terms of sectional curvatures of the
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factors Ni as

(33) KN (ei∧ej) = KN1
(~ai1∧~aj1) cos θ2

i1 cos θ2
j1 +KN2

(~ai2∧~aj2) cos θ2
i2 cos θ2

j2.

We denote the qth order symmetric square matrix whose diagonal is zero and

other elements are nonnegative sectional curvatures Ks,ij = KNi
(~ais ∧ ~ajs) by

Ks. The assumption on curvature yields
∑

i<j Ks,ij ≤ q(q−1)
2 (s = 1, 2). We

introduce the nonnegative vectors ti = (cos2 θ1i, . . . , cos2 θqi) in the nonnegative

octant R
q
+ and note that

(34) t1 + t2 = ~1 = (1, . . . , 1) ∈ R
q
+.

Then we present the qth scalar curvature τq
N (T q) = 2/(q(q−1))

∑

i<j KN(ei∧ej)

in the matrix form as the following quadratic function:

(35) τq
N (T q) = F (t1, t2) =

2

q(q − 1)
(t1 · K1 · t∗1 + t2 · K2 · t∗2).

The function F (t1, t2) is convex in the product R
q
+ × R

q
+ of the nonnegative

octants. Hence the restriction of F to the convex polyhedra

G = {R
q
+ × R

q
+} ∩ {t1 + t2 = ~1}

has its maximum at the vertex. The 2q vertices of this polyhedra are presented

by pairs of q-dimensional vectors consisting of ones and zeros. Associated to any

vertex of G are two vectors: vector t1 containing q̃ units and the complementary

vector t2 = ~1 − t1 containing q − q̃ ones, say,

t1 = (1, . . . 1
︸ ︷︷ ︸

q̃

, 0, . . . , 0), t2 = (0, . . . , 0, 1, . . .1
︸ ︷︷ ︸

q−q̃

).

Denote by V1 = span{e1, . . . , eq̃} ⊂ Tm1
N1 and V2 = span{eq̃+1, . . . , eq} ⊂

Tm2
N2 the subspaces corresponding to t1 and t2, and set V q = V1 ⊕ V2. The

sums of the sectional curvatures along V1 and V2 obey the inequalities

(36)

S1 =
∑

1≤i<j≤q̃

KN1
(ei ∧ ej) ≤

q(q − 1)

2
, S2 =

∑

q̃<i<j≤q

KN2
(ei ∧ ej) ≤

q(q − 1)

2
.

Otherwise we will complete one of these subspaces, say V1 when S1 > 1, by vec-

tors of V1 to obtain q-dimensional subspace of Tm1
N1 with qth scalar curvature

larger than 1, a contradiction. In cases of q = 2, 3 either S1 or S2 vanishes.

Thus the qth scalar curvature of the extremal subspace V q obeys the inequality

τq
N (V q) =

2

q(q − 1)
(S1 + S2) ≤ 1 + Heav(q − 4).
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Proof of Theorem 2: Case q = 2 was proven in [9] without the assumption

KNi
(σ) ≥ 0 (σ ⊂ Tmi

Ni). Suppose that such immersion of Nn into a space

form Mn+p(C) exists for some q > 2. By Lemma 7, the product manifold N =

N1 × N2 satisfies the inequality τq
N (m) ≤ C at m = (m1, m2). By Theorem 1,

case 2(b), ν(m) > 0, i.e., there is a unit vector y ∈ TmN such that h(y, z) ≡ 0

and KN(y ∧ z) ≡ C for all unit vectors z ∈ TmN orthogonal to y. One may

assume that the projection ỹ of y on the factor N1 (say) is nonzero. Hence

KN(ỹ ∧ z) > 0 for all unit vectors z ∈ TmN2. This is a contradiction since

KN(ỹ ∧ z) = 0 for all z ∈ TmN2.

Proof of Theorem 3: Suppose that such an immersion of Nn into a space

form Mn+p(C) exists. By Lemma 7 (for q = 2), the product manifold must

satisfy KN (m) ≤ C + λ2
0 at m = (m1, m2). Hence Kh(m) ≤ λ2

0 ≤ λ2
h(m). By

Theorem 1, case 1(b), νc(ξ) > 0 for some normal ξ at m with the property

|ξ| = λh(m). Thus there is a unit vector y ∈ TmN such that h(y, z) ≡ ξ · 〈y, z〉
and KN(y ∧ z) ≥ C + λ2

0 > 0 for all unit vectors z ∈ TmN orthogonal to y.

One may assume that the projection ỹ of y on the factor, say N1, is nonzero.

Hence KN(ỹ ∧ z) > 0 for all unit vectors z ∈ TmN2. This is a contradiction

since KN (ỹ ∧ z) = 0 for all z ∈ TmN2.

Given a submanifold N ⊂ R
l with index ν(N) > 0, it is interesting to ask

whether the relative nullity distribution gives rise to an Euclidean factor of the

submanifold.

We say that the scalar curvature τN of a Riemannian manifold N has sub-

quadratic growth along geodesics if it satisfies limt→∞ τN (t)/t = 0, where

t is the parameter of any geodesic γ and τN (t) is the scalar curvature of N at

γ(t). The next result follows directly from Theorem 1 and Theorems 3, 4 of [6]

(see [9] for q = 2).

Theorem 4: Let N2n ⊂ R
2n+p be a minimal isometric immersion of a complete

Kähler manifold of nonpositive qth scalar curvature for some q ≤ n
2 . Suppose

that 2p(q−1)<n and one of the following holds:

a) the scalar curvature τN has subquadratic growth along geodesics, or

b) there exists x0 ∈ N2n where all the holomorphic curvatures of planes in

Tν(x0)
⊥ are negative.

Then N2n = N
2p(q−1)
1 × R

2n−2p(q−1) and f = f1 × Id splits.
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2.2 Tests for totally umbilical submanifolds. Curvature-invariant

submanifolds N ⊂ M are defined by the condition

(37) RM (x, y)z⊥ = 0 (x, y, z ∈ TN)

(which is obviously satisfied for the submanifolds in space forms).

The following is a special case of the result in [18].

Proposition 5: Let N ⊂ M be a curvature-invariant submanifold with

λh(N) > 0. Suppose that ξ is a continuous strongly principal curvature normal

(vector field) with the property νc(ξ(m)) ≥ s for all m ∈ N . Let Gξ ⊂ N be

an open set of N on which the codimension of the strongly conformal nullity

subspace Tc(ξ) relative to ξ is maximal. Then the following hold:

(1) Tc(ξ) is an integrable strongly umbilical distribution on Gξ, whose leaves

are (pieces of) s-dimensional totally umbilical submanifolds in M if and

only if ξ is parallel in the normal connection of TN⊥ along Tc(ξ).

(2) If s > 1 then ξ is parallel in the normal connection of TN⊥ along Tc(ξ)

on Gξ.

(3) The leaves are totally geodesic in Gξ if and only if ∇x(λh) = 0 for x⊥Tc(ξ).

Moreover, if M is complete then the leaves (on a domain Gξ) are complete.

From Theorem 1 (case 2) and Proposition 5 we deduce Theorem 5, which

completes results in [3]. The assumption on the sectional curvature in Theorem 5

can be replaced by the weaker one for sth Ricci curvature, see [19], [20].

Theorem 5: Let Nn ⊂ Mn+p be a complete curvature-invariant submanifold.

Suppose that λh(N) > 0 and τq
h(N) ≤ λ2

h(N) are valid for some q ≤ n/2. If one

of the conditions following holds,

a) KN(σ) > 0 (σ ⊂ TN) and p < (n + 1)/(4(q − 1)) + 1,

b) KM (σ) > 0 (σ ⊂ TM|N) and p < n/(4q − 3) + 1,

then Nn is a totally umbilical submanifold.

Proof of Theorem 5: From the conditions it follows that p(q− 1) < n. Assume

that N is not a totally umbilical submanifold, i.e., νc(ξ) < n. By Theorem 1,

νc(ξ) ≥ n − 2(p − 1)(q − 1) for some continuous normal vector field ξ of length

λh(N). The leaves {L} of the strongly conformal nullity distribution are totally

umbilical submanifolds in M of normal curvature λh(N) (see Proposition 5),

and are totally geodesic in N . Let L1, L2 be two sufficiently close leaves. The

shortest geodesic γ(t) (0 ≤ t ≤ 1) with length l = dist(L1, L2) between the

points mi ∈ Li is orthogonal to L1 and L2. Since normals ξ1 =
.
γ (0), ξ2 =

.
γ (1)
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to L1, L2 are tangent to N and orthogonal to mean curvature vectors of leaves,

we have hi(xi, xi)⊥ξi, where xi ∈ Tmi
Li. We have 2νc(ξ) > n − 1 for a), and

2νc(ξ) > n + p − 1 for b). Hence, in both cases, a) and b), there is unit vector

y1 ∈ Tm1
L such that its parallel translation y1(t) along γ belongs to Tm2

L.

The formula for 2nd variation of the energy E of γ along the parallel vector

field y1(t), in N for a) and in M for b), is reduced to

a)
1

2
E′′(y1) = −

∫ 1

0

KN(
.
γ ∧y1(t))dt, b)

1

2
E′′(y1) = −

∫ 1

0

KM (
.
γ ∧y1(t))dt.

From E′′(y1) ≥ 0 we get a contradiction to positiveness of curvature KN or

KM .

The isotropic submanifolds with low codimension have not been studied much,

see [15] and [5] in the case of isometric immersions between space forms. An

isotropic submanifold N ⊂ M is called a constant isotropic submanifold

if the function λh: N → R, see Section 2.2, is constant. From Theorem 5

(with q = 2) we conclude the following statement about constant isotropic

submanifolds.

Corollary 4 (see [20]): Let Nn ⊂ Mn+p be a complete curvature-invariant

constant isotropic submanifold. If one of the following conditions holds:

a) KN(σ) > 0 (σ ⊂ TN) and p < n+5
4 ,

b) KM (σ) > 0 (σ ⊂ TM|N) and p < n+5
5 ,

then N is a totally umbilical submanifold.

Note that isotropic isometric immersions between space forms Nn(c) ⊂
Mn+p(c̃) satisfying the conditions c ≥ c̃ and p < n(n+1)

2 are totally umbili-

cal [5].

2.3 Submanifolds with nonpositive extrinsic qth scalar curvature.

From case 2 of Theorem 1 following the proof of Theorem 5 we conclude:

Theorem 6: Let Nn⊂Mn+p be a complete curvature-invariant submanifold.

Suppose that for some q ≤ n/2 we have τq
h(N) ≤ 0 or γq

h(N) ≤ 0. If one of the

following conditions holds:

a) KN(σ) > 0 (σ ⊂ TN) and p < n+1
4(q−1) ,

b) KM (σ) > 0 (σ ⊂ TM|N) and p < n+1
2q−1 ,

then N is a totally geodesic submanifold.

By a result of D. Ferus [8], any complete Riemannian submanifold Nn of

a round sphere SN with the property ν(N) > F (n) must be totally geodesic.
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The Ferus numbers F (n) are defined as F (n) = max{t: t < ρ(n − t)}. Here

ρ((odd)24b+c) = 8b + 2c (b ≥ 0, 0 ≤ c ≤ 3), i.e., ρ(N) − 1 is the maximal

number of continuous pointwise linearly independent vector fields on

the sphere Sn−1. In particular, F (n) ≤ 8d − 1 for n < 16d, and F (2d) = 0.

Any complete Kähler submanifold N of CPN with ν(N) > 0 is totally geodesic,

[1].

Basing on the above facts and Theorem 1, we generalize Florit’s result.

Theorem 7: Let Nn ⊂ Mn+p be a complete Riemannian submanifold, and

the curvature tensor obeys

(38) RM (x, y)x = −kyx2 (x, y ∈ TN, k = const > 0).

Suppose that for some q ≤ n/2 we have τq
h(N) ≤ 0 or γq

h(N) ≤ 0. If one of the

following conditions holds:

a) p <
n − F (n)

2(q − 1)
, b)N, M are Kähler and p <

n

2(q − 1)
,

then N is a totally geodesic submanifold.

Note that (38) is stronger than (37), and it is obviously satisfied for submani-

folds in a sphere of curvature k. In case of stronger restrictions on the curvature

of M in Theorem 6 we obtain the global extremal theorem:

Theorem 8: Let Mn+p be a simply connected Riemannian space with the sec-

tional curvature 1 ≤ KM (σ) ≤ 9/4 (σ ⊂ TM), and Nn be a compact curvature-

invariant submanifold. If qth scalar curvature (or q-dimensional curvature) of

N is less than or equal to 1 for some q ≤ n/2, and p ≤ (n − q)/(2(q − 1)), then

Mn+p is isometric to the unit sphere.

The assertion fails if the condition on the curvature is not satisfied. For

instance, the complex projective space with curvature 1 ≤ KM (σ) ≤ 9/4

(σ ⊂ TM) contains totally geodesic submanifolds that are globally isometric

to a real projective space of constant curvature 1. Theorems 6–8 are generaliza-

tions of results in [3], where q = 2, γq
h(N) ≤ 0 and a much stronger restriction

on the curvature tensor is assumed.

Proof of Theorem 8: Let Gν ⊆ N be an open domain where the relative nullity

index is minimal. It is well-known (see, e.g., [12]) that the minimum relative

nullity distribution Tν is smooth and integrable on Gν , and the leaves {L}
are ν(N)-dimensional totally geodesic submanifolds in both N and M . If, in



312 V. ROVENSKI Isr. J. Math.

addition, N is complete, then the leaves are also complete. Because of τq(V ) ≤ 1

and τq
M (V ) ≥ 1 for V ⊂ TM|N , we have τq

h(N) ≤ 0. Hence from Theorem 1

(case 2b) follows that ν(N) ≥ q. The scalar curvature of any q-dimensional

subspace V ⊆ Tν(m) satisfies the equalities τq
N (V ) = 1 = τq

M (V ). Hence the

relative nullity foliation {L} (TL = Tν) on a domain Gν satisfies the equalities

KM (x ∧ y) = KN(x ∧ y) = 1 (x, y ∈ Tν).

Thus, M contains a ν(N)-dimensional totally geodesic submanifold L0 of cur-

vature 1. The rest of the proof is similar to [3] for q = 2. We need the following

Lemma 8 ([3]): Let M be a compact simply connected Riemannian C4-mani-

fold with the sectional curvature 1 < KM (σ) ≤ 4 (σ ⊂ TM). Then a complete

totally geodesic submanifold Lν (ν ≥ 2) is simply connected.

By Lemma 8 and the curvature restrictions on M , a submanifold L0 is simply

connected. Hence it is isometric to the unit ν(N)-dimensional sphere. Thus M

contains a closed geodesic with length 2π. If M is a simply connected Rieman-

nian manifold with the curvature 0 < 1/4c < KM (σ) ≤ c for all σ ⊂ TM then

the injectivity radius rin(M) ≥ π/
√

c, [10], and every geodesic with the length

≤ rin(M) is the shortest one. In our case of c = 9/4, every geodesic with the

length 2/3π is the shortest one. Let m1, m2, m3 be the points on this geodesic

that define the triangle with equal sides 2/3π. Then we apply Toponogov’s the-

orem (see below) to this triangle with vertices m1, m2, m3 and obtain that M

is isometric to the unit sphere.

Theorem 9 ([21]): Let a compact Riemannian C4-manifold M with the sec-

tional curvature KM (σ) ≥ 1 (σ ⊂ TM) contains a triangle of perimeter 2π

whose sides are the shortest geodesics. Then M is isometric to the unit sphere.

2.4 Applications to Hilbert submanifolds. In this section we apply the

algebraic results of Section 1.4 to the 2-nd fundamental form of a Hilbert sub-

manifold with the first normal space of finite dimension. All manifolds and fiber

bundles under discussion are Hilbert of the class C∞, model or a tangent space

(fibre) is a separable Hilbert space (i.e. l2) denoted by H, and maps between

them are smooth morphisms. Up to an isometry, there is only one complete

simply connected Hilbert manifold with given constant positive or negative sec-

tional curvature modeled on a given Hilbert space. In contrast, one has to

give an additional structure, in order to define scalar (or Ricci) curvature of an

infinite dimensional Hilbert manifold, see [11].
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The usual model of a Hilbert sphere is a totally umbilical hypersurface

S∞(C) = {x ∈ H : 〈x, x〉 = 1/C} of H with the induced Riemannian met-

ric. It is a complete manifold of a constant sectional curvature C. A small

sphere N ≃ S∞(c) (of curvature c > C) in a Hilbert sphere S∞(C) with the

codimension p < ∞ can be presented by the equations

x1 =
√

1/C − 1/c, x2 = · · · = xp = 0,

∞∑

i=1

x2
p+i = 1/c.

Let N ⊂ M∞ be a submanifold with the second fundamental form

h: TN ×TN → TN⊥. The first normal space TmN1 of TmN⊥ is spanned by

the image of h at m, that is,

TmN1 = span{h(x, y) : x, y ∈ TmN} ⊂ TmN⊥.

Hilbert submanifolds of finite codimension, dimTmN⊥ < ∞, (hyper-

surfaces when dimTmN⊥ = 1) serve as example of submanifolds with

dimTmN1 < ∞ for all m ∈ N .

From Lemma 6 we conclude the following statement analogous to Theorem 1.

Theorem 10: Let N ⊂ M∞ be a Hilbert submanifold with dimTmN1 =

p < ∞.

1. If λh(m)>0 and τq
h(m)≤λ2

h (or γq
h(m) ≤ λq

h) for some q ≥ 2 and m ∈ N ,

then there exists ξ such that

(39) a) codimTu(ξ) ≤ (p − 1)(q − 1), b) codimTc(ξ) ≤ 2(p − 1)(q − 1).

2. If τq
h(m) ≤ 0 for some q ≥ 2 and m ∈ N , then Kh(m) ≤ 0 and

(40) a) codimTa(m) ≤ p, b) codimTν(m) ≤ 2p.

Okrut [14] showed that a curvature-invariant submanifold in a Hilbert mani-

fold M∞ with finite codimension and Kh ≤ 0 has at each point nonzero relative

nullity subspace. He applied this to a complete submanifold in a Hilbert sphere

S∞ proving that such a submanifold is a large sphere.

Using Theorem 10 and Proposition 5 (which may be adopted for Hilbert

submanifolds) we conclude the following statement that generalizes result in [14].

Theorem 11: Let N ⊂ S∞(C) be a complete Hilbert submanifold with

dimTmN1 ≤ p < ∞ for all m ∈ N .

1. If τq
h(N) ≤ 0 for some q ≥ 2 then N is a great sphere.
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2. If λh(N) > 0 and τq
h(N) ≤ λ2

h(N) for some q ≥ 2 then N is a small sphere.

Proof of Theorem 11: In case 1, by Theorem 10 we obtain Kh(m) ≤ 0, and

the statement follows from Theorem 3 in [14].

The proof in case 2 is similar to proof of Theorem 5 for case (b). Assume the

contrary: N is not a small sphere. By Theorem 1, there is a continuous normal

vector field ξ of the length λh(N) and strongly conformal nullity subspaces

Tc(ξ) of codimension 0 < codimTc(ξ) ≤ 2(p − 1)(q − 1). The leaves {L} of the

strongly conformal nullity distribution are small spheres of finite codimension

in S∞(C) of normal curvature λh(N), see Proposition 5, and they are totally

geodesic in N . Let L1, L2 be two sufficiently close leaves. Let mi ∈ Li be

the nearest points of these small spheres and γ(t) (0 ≤ t ≤ 1) be a shortest

geodesic (an arc of a great circle) with the length l = dist(L1, L2) between

the points mi ∈ Li. This geodesic is orthogonal to L1 and L2. Since the

normals ξ1 =
.
γ (0), ξ2 =

.
γ (1) to L1, L2 are tangent to N and orthogonal

to mean curvature vectors of leaves, then hi(xi, xi)⊥ξi, where xi ∈ Tmi
Li.

Since the codimension of leaves in finite and dimension is infinite, there is unit

vector y1 ∈ Tm1
L such that its parallel translation y1(t) along γ belongs to

Tm2
L. From non-negativeness of the 2nd variation of the energy of γ we conclude

1/2E′′(y1) = −
∫ 1

0 KS∞|N (
.
γ, y1(t))dt ≥ 0, a contradiction to positiveness of

curvature of a Hilbert sphere.

Corollary 5: A complete constant isotropic Hilbert submanifold N ⊂ S∞(C)

with dimension dimTmN1 < ∞ is a small sphere.

An application of Theorem 10 are the following statements. Their proofs are

similar to proofs of Theorems 2–3.

Theorem 12: Let N = N1 × N2 be a product of Hilbert manifolds. Suppose

that there exists m = (m1, m2) ∈ N such that KNi
(σ) ≥ 0 (σ ⊂ Tmi

Ni) and

τq
Ni

(mi) ≤ 1 (i = 1, 2) for some q. Then, there is no isometric immersion of N

into a Hilbert sphere S∞(C) with C = 1 + Heav(q − 4) and dimTmN1 < ∞.

Case q = 2 of Theorem 12 can be proven without the assumption KNi
(σ) ≥ 0

(σ ⊂ Tmi
Ni).

Theorem 13: Let N = N1 × N2 be a product of Hilbert manifolds. Suppose

that there exists m = (m1, m2) ∈ N such that KNi
(mi) ≤ C + λ2

0 (i = 1, 2) for

some λ0 > 0 and C > −λ2
0. Then, there is no isometric immersion of N into a

Hilbert space M∞(C) of constant sectional curvature C with λh(m) ≥ λ0 and

dimTmN1 < ∞.
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